The Wallis product is the infinite product representation of :
It was published in 1656 by John Wallis.
(This is a form of Wallis' integrals.) Integrate by parts:
u &= \sin^{n-1}x \\ \Rightarrow du &= (n-1) \sin^{n-2}x \cos x\,dx \\ dv &= \sin x\,dx \\ \Rightarrow v &= -\cos x\end{align}
\Rightarrow I(n) &= \int_0^\pi \sin^n x\,dx \\[6pt] {} &= -\sin^{n-1}x\cos x \Biggl|_0^\pi - \int_0^\pi (-\cos x)(n-1) \sin^{n-2}x \cos x\,dx \\[6pt] {} &= 0 + (n-1) \int_0^\pi \cos^2x \sin^{n-2}x\,dx, \qquad n > 1 \\[6pt] {} &= (n - 1) \int_0^\pi (1-\sin^2 x) \sin^{n-2}x\,dx \\[6pt] {} &= (n - 1) \int_0^\pi \sin^{n-2}x\,dx - (n - 1) \int_0^\pi \sin^{n}x\,dx \\[6pt] {} &= (n - 1) I(n-2)-(n-1) I(n) \\[6pt] {} &= \frac{n-1}{n} I(n-2) \\[6pt] \Rightarrow \frac{I(n)}{I(n-2)} &= \frac{n-1}{n} \\[6pt]\end{align} Now, we make two variable substitutions for convenience to obtain:
We obtain values for and for later use.
I(0) &= \int_0^\pi dx = x\Biggl|_0^\pi = \pi \\[6pt] I(1) &= \int_0^\pi \sin x\,dx = -\cos x \Biggl|_0^\pi = (-\cos \pi)-(-\cos 0) = -(-1)-(-1) = 2 \\[6pt]\end{align}
Now, we calculate for even values by repeatedly applying the recurrence relation result from the integration by parts. Eventually, we end get down to , which we have calculated.
Repeating the process for odd values ,
We make the following observation, based on the fact that
Dividing by :
By the squeeze theorem,
Let :
\Rightarrow\frac{2}{\pi} &= \prod_{n=1}^\infty \left(1 - \frac{1}{4n^2}\right) \\[6pt] \Rightarrow\frac{\pi}{2} &= \prod_{n=1}^\infty \left(\frac{4n^2}{4n^2 - 1}\right) \\[6pt] &= \prod_{n=1}^\infty \left(\frac{2n}{2n-1}\cdot\frac{2n}{2n+1}\right) = \frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdots\end{align}
Consider now the finite approximations to the Wallis product, obtained by taking the first terms in the product
where can be written as
p_k &= {1 \over {2k + 1}} \prod_{n=1}^{k} \frac{(2n)^4}{[(2n)(2n - 1)]^2} \\[6pt] &= {1 \over {2k + 1}} \cdot .\end{align}
Substituting Stirling's approximation in this expression (both for and ) one can deduce (after a short calculation) that converges to as .
\zeta(s) &= \sum_{n=1}^\infty \frac{1}{n^s}, \Re(s)>1 \\[6pt] \eta(s) &= (1-2^{1-s})\zeta(s) \\[6pt] &= \sum_{n=1}^\infty \frac{(-1)^{n-1}}{n^s}, \Re(s)>0\end{align}
Applying an Euler transform to the latter series, the following is obtained:
\eta(s) &= \frac{1}{2}+\frac{1}{2} \sum_{n=1}^\infty (-1)^{n-1}\left[\frac{1}{n^s}-\frac{1}{(n+1)^s}\right], \Re(s)>-1 \\[6pt] \Rightarrow \eta'(s) &= (1-2^{1-s})\zeta'(s)+2^{1-s} (\ln 2) \zeta(s) \\[6pt] &= -\frac{1}{2} \sum_{n=1}^\infty (-1)^{n-1}\left[\frac{\ln n}{n^s}-\frac{\ln (n+1)}{(n+1)^s}\right], \Re(s)>-1\end{align}
\Rightarrow \eta'(0) &= -\zeta'(0) - \ln 2 = -\frac{1}{2} \sum_{n=1}^\infty (-1)^{n-1}\left[\ln n-\ln (n+1)\right] \\[6pt] &= -\frac{1}{2} \sum_{n=1}^\infty (-1)^{n-1}\ln \frac{n}{n+1} \\[6pt] &= -\frac{1}{2} \left(\ln \frac{1}{2} - \ln \frac{2}{3} + \ln \frac{3}{4} - \ln \frac{4}{5} + \ln \frac{5}{6} - \cdots\right) \\[6pt] &= \frac{1}{2} \left(\ln \frac{2}{1} + \ln \frac{2}{3} + \ln \frac{4}{3} + \ln \frac{4}{5} + \ln \frac{6}{5} + \cdots\right) \\[6pt] &= \frac{1}{2} \ln\left(\frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{3}\cdot\frac{4}{5}\cdot\cdots\right) = \frac{1}{2} \ln\frac{\pi}{2} \\ \Rightarrow \zeta'(0) &= -\frac{1}{2} \ln\left(2 \pi\right)\end{align}
|
|